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The design and syntheses of new crystalline microstructured

solid-state materials such as zeolites and their analogues have
attracted much attention because of their guest inclusion proper-

ties12 Aluminosilicate zeolites and their inorganic analogues with

-
well-defined micropores show shape-selective adsorption and [CoWr20u]
catalysis and have been most widely applied to the separation of +
C4 alkanes;* oxygen from aif} and water from an azeotropic ﬁ
mixture of water and ethanol (bp 351 K at 4.00 wt % ofQ).°
There is also a great interest in the syntheses of organic zeolites [Cr:0(QOCH)s(H20)z]*

with organic or organometallic building block€.These organic
zeolites can be easily functionalized at atomic and molecular levels
and show unique inclusion properties. Even inorganic and organic
zeolites cannot shape-selectively distinguish water from methanol
and ethanol.

Nanosized polyoxometalates are also suitable building blocks
for crystalline microstructured materiddsand some compounds
contain nitriles or alcohols as guestiough they cannot be
removed or reversibly included. Recently, we have reported the
synthesis of K[Crs0O(OOCHY) (H20)s][ a-SiW;1204q] - 16H,0 and the
selective inclusion of polar molecules up to C2. The inclusion
property was quantitatively explained by the change in the lattice (B)
energy associated with the structural change of the host in the guestFigure 1. Synthesis and crystal structur(plane) oflaandlb. Location
sorption-desorptiort%11 On the basis of the results, we reached of the (A) constituent ions and (B) water of crystallizationlia (C) 1b.
an idea that the catieranion interaction increases with an increase
in the anion charges, and the closer packing of the ions is achievedVas prepared by the dehydration of the single crystalefinder
to reduce the size and space for the polar guests. The reductior® dry No flow (333 K, 3 h). Then the crystal structure db
will lead to the shape-selective adsorption and separation. Here,was determined. The crystal structure is shown in Figure“1C.
we report a zeotype polyoxometalate-macrocation ionic crystal of The arrangements of the polyoxometalates and macro cations
Cs[Crs0(0O0CH)(H,0)s][0-COW;04g+7.5H,0 (1a) with the were essentially the same as thosd&while small reduction in
shape-selective adsorption of water and separation of only waterthe & (—0.316 A) andb-axes (-0.696 A) of the lattice was
from an ethanol/water azeotropic mixture. observed. The position of two molecules of the water of crystal-

The schematic illustration of the synthesis and the crystal lizationin1b could be crystallographically determined. These water
structuré? (ab plane) ofla are shown in Figure 1. The polyoxo- ~Molecules were coordinated to the cesium ions{€Ow:: 3.04
metalates and macrocations were alternatively arranged, and theéd, C%"—Owz: 3.03 A), were crystallographically different, and
surplus anion charges were compensated by the neighboring cesiurvere not in hydrogen-bonding distance4©0w,: 5.13 A).
ions. The space volume dfa corresponded to 17% of the crystal The states of the water of crystallization i and 1b were
lattice and was smaller than 36% o§[Kr;O(OOCH)(H.0)s][ o supported by the in situ IR measurements. The IR spectruba of
SiW1,040]-16H,0 with polyoxometalate charge ef4. The water showed a broad band around 25600 cnt?, assignable to the
of crystallization inla was closely located (-O,: 2.72-2.77 v(OH) band of the water molecules with hydrogen bondih@n
A) to form a winding hydrogen bond network along theaxis the other hand, the IR spectrum I showed two sharp bands at
(Figure 1B). These water molecules were surrounded by the 3570 and 3450 cmt with the integrated intensity ratio of 1:1.
constituent ions (Cs-0Oy: 2.30-2.78 A, QnacrOw: 2.59-2.76 Therefore, the bands at 3570 and 3450 tmere assigned to the
A, Opoy—Ow: 2.85-3.10 A). The narrowest cross diameter of the water of crystallization coordinated to Gdaking into account the
channel was ca. 2.7 A and comparable to the van der Waals crystallographic data and the report that water molecules adsorbed

w’ .;. Prrid ';. oy .:. ”e

;_.‘....{5.'..5;_.‘..;52,:.5_-._.‘. g EYA

diameter of oxygen (3.0 A% on alkali metal ion exchanged zeolites{ molecule/alkali metal
About 50% of the water of crystallization iba was desorbed ion) show the sharp(OH) bands around 3500 crh'® The powder
by the evacuation at room temperature to form phséweight XRD pattern of 1a and 1b showed reversible transformation

loss 1.8 wt %, calcd 1.7 wt % for the desorption of 4 mol of the betweenla and1b without the changes in the intensity and half-
water of crystallization per mol ofo-CoW;,04],6~ i.e., there are width of the signals upon the water sorptiedesorption cycles
ca. 3.5 mol left inlb). The samplelb for the single-crystal analysis  (Figure S1).
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40 X-ray crystallographic files ofla and 1b (CIF). This material is
available free of charge via the Internet at http://pubs.acs.org.
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